Математика для анализа данных
Курс «Математика для анализа данных» является составляющей частью серию кусов по ИИ в МГУ.
Программа курса:
1. Число, вектор, матрица и операции с ними. Напоминание об оценке сложности вычислений. Нормы векторные и матричные и их свойства.
2. Унитарные матрицы, ранг матрицы, концепция малоранговой аппроксимация, SVD. Приложения: аппроксимация функции многих переменных, сжатие изображений, рекомендательные системы.
3. Системы линейных уравнений. Метод Гаусса, LU разложение и их свойства. Обратная матрица, число обусловленности.
4. Разреженные матрицы, способы их хранения. Графы, их свойства и типичные задачи. Приложения: потоки, разрезы, клики.
5. Введение в итерационные методы решения линейных систем большой размерности. Примеры методов (Ричардсон, Чебышев и CG) и идеи их получения.
6. Разложение по собственным векторам. QR разложение и QR алгоритм. Степенной метод. Задача кластеризации и кластеризация вершин графа.
7. Тензоры и их свойства. Классические тензорные разложения: разложение Таккера, каноническое разложение, TT-разложение. Приложения: сжатие данных, ускорение вычислений.
c 06/16/2022, 12:00 PM
по 06/16/2029, 12:00 PM